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ABSTRACT

Context. Coronal mass ejections (CME) are one of the main drivers of space weather. However, robust and efficient numerical
modeling of the initial stages of CME propagation and evolution process in the sub-Alfvénic corona is still lacking.
Aims. Magnetohydrodynamic (MHD) solar coronal models are critical in the Sun-to-Earth model chain but sometimes encounter
low-β (< 10−4) problems near the solar surface. This paper aims to deal with these low-β problems and make MHD modeling suitable
for practical space weather forecasting by developing an efficient and time-accurate MHD model of the solar corona and CME launch.
In this paper, we develop an efficient and time-accurate three-dimensional (3D) single-fluid MHD solar coronal model and employ it
to simulate the CME’s evolution and propagation.
Methods. This model is developed based on the quasi-steady-state implicit MHD coronal model (Feng et al. 2021; Wang et al. 2022a),
which can increase computational efficiency by adopting a large time-step size. Furthermore, a pseudo-time marching method, where
a pseudo time τ is introduced at each physical time step to update the solution by solving a steady-state problem on τ, is devised to
improve the temporal accuracy of CME simulations; a Regularized Biot-Savart Laws (RBSL) flux rope, whose axis can be designed in
arbitrary shape, is inserted to the background corona to trigger the CME event. We call this model the Solar Interplanetary Phenomena-
Implicit Finite Volume Method (SIP-IFVM) coronal model and utilize it to simulate a CME evolution process from the solar surface
to 20 Rs in the background corona of Carrington rotation (CR) 2219. Compared to the explicit model, it can achieve a speedup of over
60 × in quasi-steady-state coronal simulations, with the average relative difference in plasma density, RDave,ρ, being only 3.05%. In
CME simulations covering 6 hours of physical time, the computational time is less than 0.5 hours (192 CPU cores, ∼1 M cells) using
an appropriate large time-step size. It achieves a speedup of over 6 ×, with RDave,ρ < 2.0%, compared to the simulation using a small
time-step size determined by the Courant-Friedrichs-Lewy (CFL) stability restriction. Additionally, we use this model to conduct an
ad hoc simulation by artificially increasing the initial magnetic field strength of the background corona and flux rope, it indicates
that the model can efficiently deal with the time-dependent problems with plasma β (the ratio of the thermal pressure to the magnetic
pressure) as low as about 5 × 10−4. We also simulate an Orszag-Tang MHD vortex flow using the pseudo-time-marching method
adopted in the SIP-IFVM coronal model, it shows that the pseudo-time-marching method adopted in this model is also capable of
simulating small-scale unsteady-state flows.
Results. The simulation results show that this MHD coronal model is very efficient and numerically stable and is promising to timely
and accurately simulate time-varying events in solar corona with low plasma β.

Key words. Magnetohydrodynamics (MHD) –methods: numerical –Sun: corona –Sun: coronal mass ejections (CMEs)

1. Introduction

Disastrous space weather is caused by solar storms that prop-
agate to the Earth’s orbit and suddenly produce a negative im-
pact on our high-tech space-based and ground-based infrastruc-
ture on which our activities depend. The economic losses caused
by disastrous space weather to human society are increasing.
There is thus an urgent need to understand the mechanism of

space weather and eventually to be able to give reliable forecasts
hours to days in advance (e.g., Baker 1998; Feng et al. 2011a,
2013; Feng 2020b; Koskinen et al. 2017; Poedts, S. et al. 2020;
Singer et al. 2001; Siscoe 2000). To achieve this goal, we need
to develop and improve advanced numerical models to further
unravel the complex mechanisms of space weather.

The physically based MHD modeling is the first principal
method capable of bridging large heliocentric distances from
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near the Sun to well beyond Earth’s orbit self-consistently and
revealing the fundamental propagation and evolution processes
of complex solar storms (e.g., Detman et al. 2006; Dryer 2007;
Feng et al. 2007, 2010, 2011b, 2012a,b, 2014a,b, 2017; Feng
2020b; Gombosi et al. 2018; Hayashi et al. 2006a; Li & Feng
2018; Li et al. 2020; Lugaz & Roussev 2011; Mikić et al.
1999; Nakamizo et al. 2009; Riley et al. 2012; Shen et al.
2021; Tóth et al. 2012; Usmanov 1993; Usmanov & Goldstein
2003; Wu & Dryer 2015; Yang et al. 2021; Zhou et al. 2012;
Zhou & Feng 2017). However, realistic MHD simulation is a
complex process involving disparate physical spatiotemporal
scales, and is very computationally intensive. To be able to take
appropriate measures in advance to guarantee the regular oper-
ation of increasingly frequent high-tech activities of human be-
ings and eventually avoid possible economic losses, we should
spare no effort to study and establish efficient, spatiotemporal
accurate and numerical stable MHD models and utilize these
advanced models to timely and accurately predict severe space
weather (e.g., Feng 2020b; Owens et al. 2017, and references
therein).

Usually, coupling different models dedicated to specific
regions and physical problems is the preferred choice for
establishing a space-weather forecasting framework (e.g.,
Feng et al. 2013; Goodrich et al. 2004; Hayashi et al. 2021;
Kuźma et al. 2023; Odstrcil et al. 2004; Perri et al. 2022, 2023;
Poedts, S. et al. 2020; Tóth et al. 2012). Among these coupled
components, the solar coronal model is crucial for determining
the initialization of the remaining models, and is also a key factor
affecting the simulation results of solar disturbance propagation
and evolution (Brchnelova et al. 2022; Perri et al. 2023). In such
solar coronal regions, the solar wind velocity is increased from
subsonic to supersonic. Also, the Solar disturbances, such as
coronal mass ejections (CMEs) and solar proton events, propa-
gate through the solar coronal region (Feng 2020b; Kuźma et al.
2023).

However, MHD simulations of the solar corona are also the
most complex and computationally intensive component and
sometimes encounter low β (the ratio of the thermal pressure to
the magnetic pressure) problems with β as low as 10−4 near the
solar surface (Bourdin 2017). For example, to update for 1 hour
of real-time needs about 50 hrs of computing time on 100 CPUs
in the data-driven MHD modeling of a flux-emerging active re-
gion inside the low corona (Jiang et al. 2016). In this simulation,
β = 2 × 10−3 and the time step size is smaller than 0.1 seconds
due to the restriction of Courant-Friedrichs-Lewy (CFL) stability
condition. Even a steady-state global solar coronal simulation by
an explicit MHD model, which uses a solenoidality-preserving
approach to maintain magnetic field divergence-free constraints,
takes about 50 hrs of computing time on 576 MPI processes to
obtain a steady-state solution (Feng et al. 2019). In this simula-
tion, β = 1 × 10−3 near the solar surface, and the time-step size
is consequently limited to around 3.6 seconds.

As high efficiency and stability are required in practical ap-
plications, compromises are usually made in solar coronal sim-
ulations. For instance, empirical Wang-Sheeley-Arge (WSA)
(Arge et al. 2003; Yang et al. 2018) solar coronal model in
EUHFORIA (Poedts, S. et al. 2020; Pomoell & Poedts 2018),
the magneto-frictional (MF) coronal nonlinear force-free fields
module in MPI-AMRVAC (Guo et al. 2016), and simplified
physical-based zero-β solar coronal model (Caplan et al. 2019)
are used to calculate the solar coronal structures roughly. How-
ever, these simplifications discard a lot of important information,
and it was demonstrated that a simple MHD model provides bet-
ter forecasts than an empirical solar coronal model (Samara et al.

2021). Therefore, many researchers are devoted to establishing
more efficient and accurate MHD solar coronal models (Feng
2020b; Kuźma et al. 2023). In such cases, we should develop
advanced MHD coronal models with high precision, strong nu-
merical stability, and fast computational efficiency to reconstruct
complex coronal structures accurately and timely to improve our
space weather forecasting ability.

Recently, Feng et al. (2021) and Wang et al. (2022a,b) have
established a series of 2nd-order accurate, efficient, and robust
implicit MHD solar coronal models capable of dealing with low-
β problems. They reduce the wall-clock times of steady-state
MHD solar coronal simulations from several days to less than
1 hour under the same computing environment. However, these
steady-state models still have a lot of room to be improved in
spatiotemporal resolution. In this paper, we further carry out
some research work on developing both a time-accurate and
numerical stable implicit MHD solar coronal model and call it
the SIP-IFVM (Solar-Interplanetary Phenomena-Implicit Finite
Volume Method) coronal model. This SIP-IFVM coronal model
is employed to simulate the evolution and propagation procedure
of CMEs in background coronas. Based on the research work
presented in this paper, we will further develop spatiotemporal
high-order accurate and computationally efficient implicit MHD
solar coronal models in our subsequent research works.

In the implicit algorithm, although the convergence rate
can be improved by selecting a considerable time step
(Brchnelova et al. 2023; Feng et al. 2021; Kuźma et al. 2023;
Liu et al. 2023; Perri et al. 2022, 2023; Wang et al. 2019,
2022a,b), it may be accompanied by a loss in temporal accu-
racy (Linan et al. 2023). By mimicking the evolution and prop-
agation of flux ropes, it was proved that the implicit solar coro-
nal model can be time-accurate and still faster than the explicit
MHD model by selecting a suitable time step size (Guo et al.
2023; Linan et al. 2023). Besides, some researchers employed
the pseudo-time marching method by introducing a pseudo time
τ at each physical time step and solving a steady-state problem
on τ to guarantee the temporal accuracy (e.g. Bijl et al. 2002;
Li et al. 2019; Luo et al. 2001; Sitaraman & Raja 2013). How-
ever, the rough selection of a small time step and pseudo-time
marching method can reduce computation efficiency. To make
the time-accurate simulation more efficient, some flexible time-
step size adaption strategies (Hoshyari et al. 2020; Noventa et al.
2020) are proposed and implemented in fluid dynamics simula-
tions of both steady and unsteady flows. In this paper, we first
employ the implicit MHD model with a considerable time step
to mimic the steady-state coronal structures, and then select a rel-
atively small time step and carry out the pseudo-time marching
method at each physical time step to guarantee both the compu-
tation efficiency and the necessary accuracy of the CME simula-
tions.

After establishing this efficient time-accurate coronal model
capable of dealing with low β problems, we carried out some
CME simulations to further validate the model’s capability of
mimicking the propagation and evolution processes of CMEs.
Generally, two kinds of models exist to initiate a CME in a
numerical space-weather framework. The first one is based on
the non-magnetic hydrodynamic cloud, such as the plasma-
sphere cone model (Hayashi et al. 2006b; Mays et al. 2015;
Odstrcil & Pizzo 1999; Pomoell & Poedts 2018; Zhao et al.
2002). This model can roughly retrieve the geometry and dy-
namics of CMEs, i.e., the angular width, ejection direction, and
propagation speed. Therefore, this model is generally used to
predict the arrival time of CMEs and the intensity of their in-
duced shock. However, observations suggest that most CMEs
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include a magnetic flux rope. For instance, filaments (Guo et al.
2021; Ouyang et al. 2017) and hot channels (Cheng et al. 2017;
Zhang et al. 2012) are often found to be progenitors of CMEs,
which are frequently served as the proxies of magnetic flux ropes
in observations. Many non-linear-force-free-field extrapolation
and data-driven models also demonstrate the existence of pre-
eruptive flux ropes (Cheung & DeRosa 2012; Guo et al. 2017;
Pomoell & Poedts 2018). Furthermore, observations of white-
light coronagraph observations found that almost one-half of
the CMEs manifest a twisted flux rope structure (Vourlidas et al.
2012). In addition, some in-situ detections in interplanetary
space found that CMEs usually hold a monotonic rotation of in-
ternal magnetic fields, indicating the twisted flux-rope field lines
(Burlaga et al. 1981). As a result, constrained by these observa-
tions, it seems that magnetic flux rope-based CME-initialization
models are more realistic.

In recent decades, many magnetic flux rope mod-
els used to initiate a CME have been proposed. How-
ever, torus-shaped and cylindrical flux rope models are
widely used to initialize CME simulations (Kataoka et al.
2009; Marubashi et al. 2016; Nieves-Chinchilla et al. 2018;
Singh et al. 2020; Scolini, C. et al. 2019; Yang et al. 2021;
Zhang et al. 2019; Zhou & Feng 2017). Such as the Gibson–Low
flux rope model (Gibson & Low 1998) adopted in AWSoM
(Jin et al. 2017). AWSoM is a data-driven model with a domain
extending from the upper chromosphere to the corona and he-
liosphere which has been implemented in the Space Weather
Modeling Framework (Tóth et al. 2012). Also, some analyti-
cal modified Titov-Démoulin circular (Titov et al. 2014) and
an S-shaped regularized Biot-Savart laws (Titov et al. 2017)
flux ropes have been implemented in COCONUT (COolfluid
COroNal UnsTructured) coronal model (Guo et al. 2023;
Linan et al. 2023), MAS code (Linker et al. 2024), PLUTO code
(Regnault et al. 2023) and MPI-AMRVAC (Guo et al. 2019;
Keppens et al. 2023). COCONUT is one of the rapidly develop-
ing MHD models with an implicit temporal integration method
(Brchnelova et al. 2022, 2023; Kuźma et al. 2023; Perri et al.
2022, 2023), MAS is one of the currently most matured and ad-
vanced solar coronal models and adopt a semi-implicit operator
(Caplan et al. 2019), PLUTO is a multi-physics and multi-solver
explicit MHD code (Mignone et al. 2011), and MPI-AMRVAC
is an open-source framework for parallel, grid-adaptive simu-
lations of hydrodynamic and MHD astrophysical applications
(Xia et al. 2018). In this paper, we further adopt the RBSL flux
rope, which allows an arbitrary shape of the electric current path,
to initialize CME simulations in a very numerical stable, ef-
ficient, and time-accurate implicit thermodynamic MHD coro-
nal model. What makes this SIP-IFVM model different from the
aforementioned coronal models is mainly its adoption of the par-
allel LU-SGS matrix solver, the pseudo-time marching method,
the approximate linearization strategy, the decomposed MHD
equation, and the six-component grid system described below.
These combined features significantly enhance the efficiency,
time accuracy, and numerical stability of the coronal model.

Firstly, we mimic a CME evolution and propagation process
driven by an RBFL flux rope with a theoretical “S"-shape curve
path to validate the novel algorithms proposed in this paper. Sec-
ondly, we demonstrate the model’s capability of mimicking a ro-
bust magnetic environment by using this model to conduct an ad
hoc simulation with the initial magnetic field of the background
corona and flux rope multiplied by 5 and 2.5, respectively. Fi-
nally, we perform an Orszag-Tang MHD vortex flow simula-
tion (Orszag & Tang 1979) to show that the novel pseudo-time-
marching method adopted in this paper is capable of simulat-

ing small-scale unsteady-state flows, so does this MHD coronal
model. Considering that CME is one of the main drivers of space
weather (Vourlidas et al. 2019; Zhang et al. 2023), but there is
still a lack of robust and efficient modeling of the initial stages
of CME propagation and shock evolution in the sub-Alfvénic
corona below about 20 Rs (Vourlidas et al. 2019), the novel coro-
nal model developed in this paper is precisely what is needed and
expected to play an active role in improving our space weather
forecasting capabilities.

Based on the above considerations, the paper is organized
as follows. In Section 2, we introduce the governing equations
and grid system for the solar coronal and CME simulations and
demonstrate the RBSL flux rope-based CME initialization. In
Section 3, the numerical formulation of the MHD coronal model
is described in detail. This section mainly describes the dis-
cretization of the decomposed MHD equations, the implemen-
tation of the pseudo-time marching method, and the processing
of boundary conditions. We demonstrate the simulation results
in Section 4 and Appendix A. In Section 5, we summarize the
main features of the efficient time-accurate implicit MHD coro-
nal model and give some concluding remarks.

2. Governing equations and initialization

This section mainly describes the governing equations and ini-
tialization of the steady-state background coronal and time-
varying CME simulations.

2.1. The governing equations

In this paper, based on the implicit MHD quasi-steady-state
coronal model (Feng et al. 2021; Wang et al. 2022a,b), we fur-
ther develop an efficient time-accurate MHD model of corona
and CME.

We solve the decomposed MHD equations, where the mag-

netic field B =
(

Bx, By, Bz

)T
is split into a time-independent po-

tential magnetic field B0 =
(

B0x, B0y, B0z

)T
and a time-dependent

field B1 =
(

B1x, B1y, B1z

)T
(e.g., Feng et al. 2010; Fuchs et al.

2010; Guo 2015; Ogino & Walker 1984; Powell et al. 1999;
Tanaka 1995; Wang et al. 2022a). The governing MHD equa-
tions are calculated in the heliographic rotating coordinate sys-
tem (Fränz & Harper 2002; Thompson 2006), and reads as fol-
lows (Wang et al. 2022a).































































∂ρ

∂t
+ ∇ · (ρv) = 0,

∂(ρv)
∂t
+ ∇ ·

[

ρvv +

(

p +
B2

1
2 + B1 · B0

)

I − B1B1 − B1B0 − B0B1

]

= − (∇ · B1) B − ρGMs

r3 r − 2ρω × v − ρω × (ω × r) + Sm,
∂E1
∂t
+ ∇ · [(E1 + pT1 + B1 · B0) v − B (v · B1)

]

= − (∇ · B1) (v · B1) − ρv ·
(

GMs

r3 r + ω × (ω × r)
)

+ S E ,
∂B1
∂t
+ ∇ · (vB − Bv) = − (∇ · B1) v.

.

(1)

In this equation, B = B0 + B1, E1 =
p

γ−1 +
1
2ρv2 + 1

2 B2
1 and

pT1 = p +
B2

1
2 . In the solar coronal model, the polytropic in-

dex is set to γ = 1.05 (Hayashi et al. 2006a; Linker et al. 1999;
Steinolfson & Hundhausen 1988; Wu et al. 1999; Wu & Dryer
2015). In the definition of the magnetic field, a factor of 1√

µ0

is absorbed with µ0 = 4 × 10−7π H m−1 denoting the mag-
netic permeability. ρ and v = (u, v,w)T represent the plasma
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density and the velocity in the Cartesian coordinate system. As
usual, G means the universal gravitational constant, Ms means
the mass of the Sun, and GMs is 1.327927 × 1020 m3 s−2. Also,
|ω| = 2π

25.38 radian day−1 denotes the sidereal angular speed of
the Sun (Priest 2014), r is the position vector and r = |r| denotes
the heliocentric distance. The thermal pressure of the plasma is
defined as p = ℜρT , whereℜ = 1.653×104 m2 s−2 K−1 denotes
the gas constant, and T is the temperature of the bulk plasma.

For convenience of description, we write the above MHD
equations in the following compact form

∂U

∂t
+∇·F (U) =

∂U

∂t
+
∂f (U)
∂x
+
∂g (U)
∂y
+
∂h (U)
∂z

= S (U,∇U) . (2)

Here, U = (ρ, ρv, E1,B1)T denotes the conservative variable vec-
tor, ∇U corresponds to the derivative of U, F (U) = (f, g, h) is the
flux vectors in the x, y and z directions, and S = SPowell + Sgra +

Srot+Sheat represents the source term vector corresponding to the
Godunov-Powell source terms, the gravitational force, the Cori-
olis force, and the heating source terms defined as below

SPowell = − ∇ · B1



























0
B

v · B1
v



























,

Sgra = −
ρGMs

|r|3



























0
r

r · v
0



























,

Srot = − ρ



























0
ω × (ω × r) + 2ω × v

v · (ω × (ω × r))
0



























,

Sheat = −



























0
Sm

S E

0



























.

(3)

The term Sheat is used to mimic the effect of coronal heating
and solar wind acceleration (e.g., Feng et al. 2010; Li et al. 2005;
Lionello et al. 2008; Riley et al. 2015; Suess et al. 1996). In def-
inition of Sheat, Sm denotes the momentum source term vector,
and S E = Qe + v · Sm + ∇ · q is the energy source term. Sm and
S E are defined the same as in Wang et al. (2022a), with Qe being
the volumetric heating function and∇·q the thermal conductivity
term. The heat flux q is defined in a Spitzer form or collisionless
form according to the radial distance (Hollweg 1978) as below

q =

{

ξT 5/2(b̂ · ∇T )b̂, if 1 ≤ r ≤ 10Rs

−αnekBTv, if r > 10Rs
. (4)

Here, b̂ = B
|B| , ξ = 1.6 × 10−12 J m−1 s−1 K−

7
2 (Endeve et al.

2003; Feng et al. 2010), α is set to 1 (Lionello et al. 2008), ne is
the electron number density, and kB = 1.380649 × 10−23 J K−1

means the Boltzmann constant.
The governing equations described above are used to con-

duct simulations for the steady-state background solar corona
and the evolution and propagation of CMEs. First, we perform a
time-relaxation procedure to achieve a quasi-steady background
corona. When the steady-state simulation converges, we add the
flux rope magnetic field to B1 of the quasi-steady background
corona and then carry out the subsequent time-accurate CME
simulation.

In the background coronal simulation, the time variable t in
Eq. (2) doesn’t refer to a physical time but a relaxation time used
to implement the time-relaxation iteration to get a quasi-steady
state coronal structure. As for the time-dependent CME simula-
tion, we must maintain the implicit algorithm’s temporal accu-
racy where the physical time-step size exceeds the CFL stability
restriction. In this paper, we introduce a pseudo time τ to Eq. (2)
as below and update the solution variables for the CME simula-
tions on physical time t by solving a steady-state problem on τ:

∂U

∂τ
+

(

∂U

∂t
+ R (U,∇U)

)

= 0 (5)

where R (U,∇U) = ∇ · F (U) − S (U,∇U). More description of
how to solve Eq. (5) is presented in Subsection 3.3.

To make the governing equations more convenient to dis-
cretize, the variables r, ρ, v, p, B, t and ω are normalized by Rs

(solar radius), ρs, as, ρsa
2
s ,

√

ρsa2
s , Rs

as
and as

Rs
, respectively. Here,

ρs and as denote the plasma density and the acoustic wave speed
at the solar surface.

2.2. Initialization of quasi-steady coronal and time-varying
CME simulations

The observed synoptic magnetogram of the photosphere con-
strains the steady-state simulation of the background corona.
The radial magnetic field at the inner boundary is obtained from
the line-of-sight photospheric magnetic data provided by the
GONG-ADAPT (Global Oscillation Network Group-Air Force
Data Assimilative Photospheric Flux Transport) magnetogram
(Li et al. 2021; Perri et al. 2023). At the beginning of the steady-
state solar coronal simulations, the magnetic field B0 is gen-
erated from the potential field (PF) solver of 20-order spher-
ical harmonic expansion, and the magnetic field topology in-
formation contained in the definition of the volumetric heat-
ing function Qe is derived from the magnetic field calculated
from the potential field source surface (PFSS) model (e.g.,
Arge et al. 2004; Ljubomir & Larisa 2012; Newkirk et al. 1970;
Reiss et al. 2019; Schatten et al. 1969). The PF and PFSS mod-
els adopt the observed GONG-ADAPT photospheric magne-
togram as the inner boundary. As usual, the plasma density ρ,
radial speed vr and thermal pressure p are given by solving
Parker’s one-dimensional hydrodynamic isothermal solar wind
solution (Parker 1963) and the initial temperature and proton
number density at the solar surface are set to be 1.3 × 106K and
1.5 × 108cm−3, respectively.

After the quasi-steady coronal simulation converged, the
magnetic field of the RBSL flux-rope is superposed to the quasi-
steady corona by implementing a divergence-free RBF (radial
basic function) interpolation (Wang et al. 2022a) to initialize
the CME simulations. In this paper, the grid of the RBSL flux
rope model is treated as a spherical mesh of (1Rs ≤ r ≤ 3Rs) ×
(

θFR − π
4 ≤ θ ≤ θFR +

π
4

)

×
(

φFR − π
2 ≤ φ ≤ φFR +

π
2

)

with θFR

and φFR determined by the value of θ and φ of the flux-rope axis
path’s central point. The grid mesh distributes uniformly along
θ- and φ- directions with a resolution of 160 × 320 and coin-
cident with the coronal mesh in the radial direction. Titov et al.
(2017) proposed the RBSL model to construct a flux rope with
an arbitrary path for its axis. It effectively reconstructs the mag-
netic structures of CME progenitors and models their initiation
and propagation in the heliosphere (Guo et al. 2019; Guo et al.
2021, 2023). In the following text of this subsection, we briefly
introduce the configuration of the RBSL flux rope utilized to ini-
tialize CME simulations in our SIP-IFVM coronal model.
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In the RBSL flux rope model, the magnetic field at a position
x and denoted by BFR(x) is calculated as the curl of an axial
vector potential field and an azimuthal vector potential field,

BFR(x) = ∇ × AI(x) + ∇ × AF (x)














AI(x) = µ0I

4π

∮

C
⋃

C∗
KI(r)R

′
(l) dl

a(l)

AF (x) = F
4π

∮

C
⋃

C∗
KF (r)R

′
(l) × r dl

a(l)2

. (6)

It is assumed that the axial vector potential field AI(x) and its
curl ∇ × AI , the azimuthal magnetic field, is generated by a cur-
rent I. The azimuthal vector potential field AF(x) and its curl
∇ × AF , the axial magnetic field, are generated by a net flux F
(Titov et al. 2017). Here C is the axis path of the flux rope, C∗ is
chosen as a mirror image of C concerning the smallest circular
section passing through the two intersections of C and solar sur-
face, l and a(l) denote the arc length and cross-sectional radius
of axis path respectively, and KI(r) and KF (r) are kernels of the
RBSL flux rope. For convenience of calculation, a(l) is simpli-
fied to a constant variable a(l) ≡ a = const along the flux rope. In
addition, the current I and flux F meet the following relationship

F = ±3µ0Ia

5
√

2
, (7)

with the sign determined by the helicity of the flux rope. The
RBSL flux rope can be defined by the flux F, axis path C,
and cross-sectional radius a. A more detailed description of the
RBSL flux rope model can be found in Titov et al. (2017) and
Guo et al. (2023). In this paper, we adopt a theoretical curve
path to confine the axis path of the RBSL flux rope. Similar to
Török, T. et al. (2010), Xu et al. (2020), and Guo et al. (2023),
the theoretical curve path (r, θ, φ) is defined as below,

f =















s(2xc−s)
x2

c
θORIEN , if 0 ≤ s ≤ xc

(s−2xc+1)(1−s)
(1−xc)2 θORIEN , if xc < s ≤ 1

,































φ = φBEG + ((s − xc) cos f + xc) LEN, 0 ≤ s ≤ 1
θ = θBEG + ((s − xc) sin f ) LEN, 0 ≤ s ≤ 1

r =















Rs +
x(2xh−x)

x2
h

h, if 0 ≤ x ≤ xh

Rs +
(x−2xh+1)(1−x)

(1−xh)2 h, if xh < x ≤ 1

. (8)

The shape of the theoretical curve path is determined by param-
eters θORIEN , xc, xh and h.

In this paper, we set θORIEN =
π
6 , xc = xh = 0.5, LEN = π

6 ,

h = 120 Mm, a = 35 Mm, F = 2× 1020 Mx and I = − 5
√

2F
3µ0a

. The
position of this RBSL flux rope in coronal region is determined
by θBEG and φBEG, we set θBEG =

π
2 which is the same latitude

of equator, and φBEG =
235π
180 . In Fig. 1, we demonstrate the “S"

shape axis path (a) and the magnetic field lines (b-d) of the RBSL
flux rope. They are illustrated in a reference coordinate with an
x axis determined by the intersection of the solar equator and the
meridian plane, which crosses the midpoint of the line connected
by the axis path’s two-foot points, the z axis parallel to the polar
axis of the Sun and the y axis defined by the right-hand rule. This
theoretical axis path is symmetrical with respect to a plane par-
allel to the z axis, (a) the magnetic field lines are viewed from x
(b) y (c) and z (d) directions, respectively, and the magnetic field
strength of the flux rope reaches 13 Gauss near the footpoints of
this “S" shape axis path.

Fig. 1. Illustration of the theoretical “S"-shape axis path (a) and the
magnetic field lines (b, c, d) of the flux rope. The x-axis is determined by
the intersection of solar equator and the meridian plane which crosses
the midpoint of the line connected by the axis path’s two foot points, the
z-axis coincides with the solar polar axis, and the y-axis is determined
by the right-hand rule, and the units of these axes are Rs. The magnetic
field lines in pictures b, c, and d are viewed from the directions of x, y,
and z.

3. Numerical method formulation

In this section, we present the numerical method formulations
used in this SIP-IFVM coronal model to reproduce the quasi-
steady corona and to mimic the evolution and propagation pro-
cess of CMEs. We briefly describe the discretization of the de-
composed MHD equations, introduce the pseudo-time march-
ing method, and demonstrate how the inner-boundary condition
is implemented. In such formulation, a GSP-LSQ method cou-
pled with a continuously differentiable weighted biased aver-
aging procedure (WBAP) limiter (Feng 2020a; Li et al. 2011;
Li & Ren 2012) is utilized to reconstruct the magnetic field,
Godunov-Powell source terms are discretized in a way that
can be incorporated to inviscid flux, the pseudo-time march-
ing method is used to guarantee temporal accuracy of the im-
plicit backward Euler solver with time-step size exceeding the
CFL condition. Meanwhile, the “no-back flow" boundary condi-
tion (Feng et al. 2021; Groth et al. 2000; Wang et al. 2022a,b) is
adopted to implement boundary conditions at the inner bound-
ary.

3.1. Solver Description

In this paper, we adopt Godunov’s method to advance cell-
averaged solutions in time by solving a Riemann problem at each
cell interface (Einfeldt et al. 1991; Godunov 1959). By integrat-
ing Eq. (2) over the hexahedral cell i and using Gauss’s theorem
to calculate the volume integral of the divergence of flux, we
reach the following discretized equation

Vi

∂Ui

∂t
= −

∮

∂Vi

F · ndΓ + ViSi, (9)
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where
∮

∂Vi
F · ndΓ =

6
∑

j=1
Fi j · ni jΓi j and Si = SPowell,i + Sgra,i +

Srot,i + Sheat,i. Hereafter Ui and Si means the cell-averaged so-
lution variable and source term in cell i, Vi is the volume of
cell i, Γi j means the interface shared by cell i and its neigh-
boring cell cell j, and also denote the area of this interface, ni j

is the unit normal vector of Γi j and points from cell i to cell
j. As did in Feng et al. (2021) and Wang et al. (2022a), Sgra,i
and Srot,i are calculated by substituting the corresponding vari-
ables at the centroid of cell i into Eq. (3), SPowell,i is calculated
by employing Gauss’s law and mean value theorem. The invis-
cid flux through the interface Γi j, Fi j · ni j = Fi j (UL,UR) · ni j,
is calculated by the positive-preserving HLL Riemann solver
(Feng et al. 2021). Here and hereafter, the subscripts “L" and
“R" denote the corresponding variables on Γi j extrapolated from
cell i and cell j, respectively. Additionally, the cell-averaged
heat source terms Sheat,i =

(

0, Sm,i,Qe,i + vi · Sm,i + (∇ · q)i , 0
)T

are calculated in a similar way as did in Wang et al. (2022a).
It means that Sm,i, Qe,i, and vi are defined as the correspond-
ing variables at the centroid of cell i, and (∇ · q)i is calcu-

lated by Green-Gauss method, (∇ · q)i =
1
Vi

6
∑

j=1
qi j · ni jΓi j where

qi j

(

TL, TR, (∇T )|i , (∇T )| j ,UL,UR

)

is the heat flux through Γi j.
As we see, the state variables as well as derivatives of tem-

perature on the cell surface Γi j are required in the calculation
of inviscid flux and heat conduction term through Γi j. For con-
venience of calculation, we utilize a second-order positivity-
preserving reconstruction method to calculate the piece-wise
polynomial of a primitive variable.

Xi(x) = X|i + Ψi ∇X|i · (x − xi) (10)

where X ∈ {ρ, u, v,w, p}, X|i is the corresponding variable at xi,
the centroid of cell i, and ∇X|i =

(

∂X
∂x
, ∂X
∂y
, ∂X
∂z

)

∣

∣

∣

∣

i
is the deriva-

tive of X at xi. Ψi is the limiter used to control spatial oscilla-
tion. Meanwhile, the temperature at the cell centroid is derived
from equation of state T |i = p|i

ℜ ρ|i and the reconstruction formu-
lation of temperature in cell i, denoted by Ti(x), is also calcu-
lated by Eq. (10). As usual, a shock detector (Feng et al. 2021;
Li & Ren 2012) is used to determine whether a Barth-limiter
(Barth & Jespersen 1989) should be triggered to control spatial
oscillation for ρ, u, v,w, p, T .

For the magnetic field, a globally solenoidality-preserving
(GSP) approach (Feng et al. 2019, 2021) is employed to main-

tain the divergence-free constraint, 1
Vi

6
∑

j=1
Bi j · ni jΓi j = 0, by per-

forming an iteration procedure when reconstructing B0 and B1
on the cell interface. However, applying a limiter to the magnetic
field can compromise its divergence-free constraint and may also
increase discretization error in the magnetic field. Considering
that (B + ǫ B)2 − B2 ≡ 2 ǫ B2 + ǫ2 B2, the discretization error
in magnetic pressure caused by the increased discretization error
of magnetic field, denoted by ǫ B, can be comparable to thermal
pressure and non-physical negative thermal pressure may appear
when deriving thermal pressure from energy density, especially
in low β regions. Therefore, in addition to utilizing decomposed
MHD equations, we discard the limiter for the magnetic field
during the quasi-steady coronal simulation to avoid degradation
in precision and divergence-free constraint of the magnetic field.
However, in the following time-varying CME simulations, a lim-
iter for the magnetic field is still necessary to control spatial os-
cillation. In this paper, we adopt a continuously differentiable

WBAP limiter (Feng 2020a; Li et al. 2011; Li & Ren 2012) for
B1 as described in Eq. 11 and constrain the max iteration for
GSP to 5 as a prelim attempt, and we found it worked well in
our CME simulations.

Xi(x) = X|i +























ψWBAP
i,1

∂X
∂x

ψWBAP
i,2

∂X
∂y

ψWBAP
i,3

∂X
∂z























∣

∣

∣

∣

∣

∣

∣

∣

∣

i

· (x − xi)

with ψWBAP
i,ξ (1, ϑ1, ϑ2, · · · , ϑ6) =































n+
6
∑

j=1

1

ϑ
q−1
j,ξ
+ǫ

n+
6
∑

j=1

1
ϑ

q
j,ξ
+ǫ

, if ϑ1, ϑ2, · · · , ϑ6 > 0

0, else

,

(11)

where ϑ j,ξ =
∂X
∂ξ

∣

∣

∣

∣

j

/ ∂X
∂ξ

∣

∣

∣

∣

i
with j ∈ {1, 2, · · · , 6}, ξ ∈ {x, y, z} and

X ∈ {B1x, B1y, B1z}. ǫ, n and q are adjustable parameters and we
set ǫ = 10−8, n = 1 and q = 4 in this paper.

3.2. Implementation of inner boundary condition

Figure 2 shows a 2D illustration of the inner-boundary cells, for
example, cell −1, which lay on the leftmost layer of this picture.
Gp1 and Gp2 are two Gaussian points on the inner-boundary
face and points −1 and 0 are the cell centroids of cell −1 and cell
0 respectively. To update solutions on cell 0, we should calculate
inviscid and heat flux through the surface of cell 0, including the
interface shared by cell −1 and cell 0. It means we should cal-
culate the reconstruction formulation of variables inside cell −1
and provide the values of these variables on the interface shared
by cell −1 and cell 0 by this reconstruction formulation.

Fig. 2. 2D illustration of the inner boundary cells which lay on the left-
most layer of this picture.

In this paper, we use the Gaussian points (Gp1 and Gp2 in
the 2D illustration) on the inner-boundary face, centroid point
of the inner-boundary cell, cell −1 for example, and centroid
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points of cell −1’s five neighboring cells which share an inter-
face with this hexahedral cell as the reconstruction stencil. Based
on the former works (Feng et al. 2007, 2019, 2021; Groth et al.
2000; Wang et al. 2022a), we implement the condition of no
“backflow" at these Gaussian points of the inner-boundary face
for both quasi-steady coronal and time-dependent CME simula-
tions. During these simulations, the inner boundary conditions
are divided into two cases according to the flow with the radial
speed of vr in the cell adjacent to the inner boundary cell in the
radial direction.

Case 1: If vr < 0, then ∂ρ

∂r
= 0, ∂p

∂r
= 0, ∂T

∂r
= 0, v = 0 and

B =

{

B0, for quasi-steady simulation
B0 + BFR, for CME simulation ,

Case 2: If vr ≥ 0, then ρ = 1, p = 1
γ
, T = 1, ∂vr

∂r
= 0, vt1 = 0,

vt2 = 0 and B =

{

B0, for quasi-steady simulation
B0 + BFR , for CME simulation , here vt1

and vt2 are tangential velocities.
Similar to Feng et al. (2021) and Wang et al. (2022a), these

boundary conditions are used to constrain the following recon-
struction formulations.

X−1(x) = X|−1 + ψ−1 (∇X)|−1 · (x − x−1) ,
X ∈{ρ, u, v,w,B1,B0, p, T }, (12)

where x is a point inside cell −1, x−1 is the centroid position of
cell −1, X|−1 is the corresponding variable at x−1 and X|−1 is
constant during the simulation, and (∇X)|−1 =

(

∂X
∂x
, ∂X
∂y
, ∂X
∂z

)

∣

∣

∣

∣−1
denotes the derivative of X at x−1. In this paper, (∇X)|−1 is ob-
tained by solving a least-square problem (Barth 1991, 1993), and
ψ−1 is defined as a Barth-limiter (Barth & Jespersen 1989).

3.3. Pseudo-time marching method

In this paper, we perform a backward Euler temporal integration
on Eq. (2) and reach the following equation,

Vi

∆Un
i

∆t
+ Rn+1

i = 0. (13)

The superscripts “n” and “n+1” denote the time level, Rn+1
i
=

6
∑

j=1
T−1

8 fi j

(

Un+1
nL
,Un+1

nR

)

Γi j − ViS
n+1
i

means the residual operator

over cell i at the (n + 1)-th time level, ∆Un
i
= Un+1

i
− Un

i
is the

solution increment between the n-th and (n + 1)-th time level,
and ∆t is the time increment. Referring to Wang et al. (2022a)
and Xia et al. (2018), we have

∆t =min (∆td,∆tc) , ∆tc = CFL · min
∀cell i

∆hi

max
∀faces

(

|vn| + c f

) ,

∆td =CFL · min
∀cell i

∆h2
i

(γ − 1) ξ max
∀faces

c2
An

(14)

where ∆hi is defined as the diameter of the inscribed sphere in
cell i, vn, c f and cAn are the normal plasma velocity, normal fast
magnetosonic speed and normal Alfvén speed on cell i’s surface
respectively, and CFL is the Courant number. In the quasi-steady
coronal simulations, CFL evolves from 0.5 and is increased by
five at each time step until ∆t reaches a predefined reference time
length τ f low which is the same as defined in Feng et al. (2021)
and Wang et al. (2022a). In our simulations, the values of τ f low

are 0.112 and 0.057 hours, and the corresponding CFLs in ∆t

formula denoted by Eq. (14) are around 100.5 and 250.5 for CR
2219 and the ad hoc case with initial magnetic field strength mul-
tiplied by 5, respectively.

As did in Wang et al. (2022a), an approximate local time lin-
earization is performed for the residual operator Rn+1

i
at (tn,Ui)

with respect to time as follows,

Rn+1
i ≈ Rn

i +













∂R
′

i

∂Ui













n

∆Un
i +

6
∑

j=1













∂R
′

i

∂U j













n

∆Un
j

where ∆Un
i/ j
= Un+1

i/ j
−Un

i/ j
is the solution increment in cell i and

cell i’s j-th neighboring cell, and R
′

i
=

6
∑

j=1
T−1

8 f
′

i j
(UnL,UnR) Γi j −

ViSi. The same to Wang et al. (2022a), the modified numerical
flux f

′

i j
(UnL,UnR) is calculated by adding an appropriate viscous

term to fi j (UnL,UnR) (Otero & Eliasson 2015b,a) to help main-
tain a diagonally dominant Jacobian matrix with a smaller con-
dition number. Consequently, Eq. (13) is approximated to a lin-
earized system in form of Eq. (15),

A
′

8N×8N (∆Un)8N = − (Rn)8N (15)

where A
′

8N×8N
=

(

V
∆t

I +

(

∂R
′

∂U

)n)

8N×8N
is an approximate Jacobian

matrix with N denoting the number of cells in computational do-
main, (∆Un)8N =

(

Un+1
)

8N
− (Un)8N and (Rn)8N denote the solu-

tion increment and residual operator on these N cells at the n-th
time step, and

(

Un+1
)

8N
and (Un)8N denote the conservative so-

lutions on these N cells at the n+1-th and n-th time steps respec-
tively. We solve Eq. (15) by the parallel implicit LU-SGS method
(Feng et al. 2021; Wang et al. 2022a) which includes a forward
sweep and a backward sweep with a higher order infinitesimal
term neglected, and set

(

Un+1
)

8N
= (Un)8N + (∆Un)8N . We also

carry out an identification for the quasi-steady state coronal con-
dition (Wang et al. 2022a). We assign

(

Un+1
)

8N
to the steady-

state coronal solution as well as terminate the program once
the quasi-steady-state coronal simulation is determined to have
reached the steady-state condition on the n-th time step. To judge
the steady-state condition promptly as well as avoid mistaking
the unsteady-state as steady-state condition, we only trigger the
identification of steady coronal condition when t > κ R

VA
where

VA =
Bs−ave√
ρs

with Bs−ave denoting the average magnetic field in-
tensity on the solar surface, R being radius of the spherical com-
putational domain, and κ denoting an adjustable parameter and
we set κ = 4.

Once the quasi-steady coronal simulations are judged to
reach a steady-state coronal structure, we insert the magnetic
field of the RBSL flux rope into the background corona and then
perform the time-dependent CME simulations. To improve the
temporal accuracy for CME simulations, we further introduce a
pseudo time τ to Eq. (13) and update the solution during each
physical time step ∆t by solving a steady-state problem on τ.
Consequently, we achieve the following equation

Vi

∆Ui

∆τ
+

(

Vi

∆Un
i

∆t
+ Rn+1

i

)

= 0. (16)

Here ∆τ is a pseudo time step and ∆Ui is the solution increment
during ∆τ.

In this paper, we solve Eq. (16) by using backward Euler
method as bellow,

Vi

Un,m+1
i

− Un,m
i

∆τ
=















Vi

Un
i
− Un,m+1

i

∆t
− R

n,m+1
i















. (17)
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In Eq. (17), Un,m+1
i

and Un,m
i

denote the solution variables on
τn,m+1 and τn,m, and Un,0

i
= Un

i
. Here and hereafter, the super-

scripts “n,m" and “n,m+1" denote the corresponding variable on
the m-th and (m + 1)-th pseudo time level during the n-th phys-
ical time step. Also, we implement an approximate local time
linearization for the residual operator R

n,m+1
i

at (τn,m,Ui) with
respect to pseudo time as below,

Rn,m+1
i

≈ Rn,m
i
+













∂R
′

i

∂Ui













n,m

∆Un,m
i
+

6
∑

j=1













∂R
′

i

∂U j













n,m

∆Un,m
j

where ∆Un,m

i/ j
= Un,m+1

i/ j
−Un,m

i/ j
is the solution increment at the m-

th pseudo time step of the n-th physical time step in cell i and cell
i’s j-th neighboring cell. Consequently, Eq. (17) can be written
as

Vi

∆τ

(

U
n,m+1
i

− U
n,m
i

)

=
Vi

∆t

(

Un
i − U

n,m+1
i

)

− R
n,m
i
−













∂R
′

i

∂U













n,m
(

Un,m+1 − Un,m
)

.

It means














Vi

∆τ
I +

Vi

∆t
I +













∂R
′

i

∂Ui













n,m













(

Un,m+1
i

− Un,m
i

)

=

Vi

∆t

(

Un
i − U

n,m
i

)

− R
n,m
i
−













∂R
′

i

∂U j













n,m
(

U
n,m+1
j
− U

n,m
j

)

.

(18)

As a result, we reach the following linearized system

A
′′

8N×8N (∆Un,m)8N = b8N (19)

where A
′′

8N×8N
=

(

V
∆τ
+ V
∆t
+

(

∂R
′

∂U

)n,m)

8N×8N
, (∆Un,m)8N =

(

Un,m+1
)

8N
− (Un,m)8N and b8N = V

∆t
((Un)8N − (Un,m)8N) −

(Rn,m)8N .
In this paper, we solve Eq. (19) by the parallel implicit LU-

SGS method (Feng et al. 2021; Wang et al. 2022a). In Eq. (19),
∆t is formulated by Eq. (14), and CFL evolves from 0.5 and is
added by five at each physical time step until ∆t reaches χ · τ f low

where χ is an adjustable parameter. Afterward, ∆t = χ · τ f low

advances solutions on the following physical time steps. The
time-step size ∆t can affect the solution accuracy and compu-
tational efficiency for time-dependent simulations. Selecting a
considerable time step in the implicit method usually leads to a
loss in temporal accuracy. In contrast, a small time step leads
to more time steps and requires more computing resources. To
find a suitable time step that can both maintain a required tem-
poral accuracy and a desired high computational efficiency, we
set χ = 1, 0.5, 0.25, 0.125 respectively, and compare the effects
of different ∆t on simulation results in Section 4.

Also, the pseudo-time-step size ∆τ can affect the conver-
gence rate of the steady-state simulation in pseudo-time τ. We
set ∆τ = 1020 in the initial pseudo time step of the n-th physical
time step and get

(

Un,1
)

8N
=

(

Un,0
)

8N
+

(

∆Un,0
)

8N
. By this mean

(

Un,1
)

8N
serves as a good preliminary guess for the steady-state

solution on τ. In the following pseudo time steps during the n-th
physical time step, we set ∆τ = ∆t to gradually evolve the so-
lution from

(

Un,1
)

8N
to the steady state solution on τ of the n-th

physical time step. This strategy helps to guarantee both numer-
ical stability and computational efficiency. Meanwhile, the sim-
ulation is judged to reach the steady state condition on τ of the

n-th physical time step when |(∆Un,m)8N |
N

< ǫ1 or |(∆Un,m)8N |
|(∆Un,0)8N | < ǫ2.

Here ǫ1 and ǫ2 are two adjustable small parameters and we
set ǫ1 = 10−5 and ǫ2 =

1
500 in this paper. Eventually, we set

(

Un+1
)

8N
=

(

Un,m+1
)

8N
and stop the pseudo-time simulation of

the n-th physical time step when the steady-state condition is
satisfied at the m-th pseudo-time step of the n-th physical time
step. For better computational efficiency, we limit the number of
pseudo-time steps during a physical time step to be no more than
Nτ and set

(

Un+1
)

8N
=

(

Un,Nτ

)

8N
once the number of pseudo-time

steps during a physical time step reaches Nτ. In this paper, we set
Nτ = 5.

Considering that the forward-backwards sweep of an LU-
SGS iteration can only update solutions of inner cells of a pro-
cessor, but not solutions of ghost cells, and the solution informa-
tion in ghost cells is also required in parallel LU-SGS method
(Feng et al. 2021), we need carefully perform synchronized MPI
data communication between different processors in the parallel
LU-SGS method (Otero & Eliasson 2015a; Petrov et al. 2017;
Sharov et al. 2000) to avoid degradation of the convergence rate.
Interested readers can refer to Appendix B to see how we imple-
ment the data communication in our six-component composite
grid system.

4. Numerical results

In this section, the SIP-IFVM coronal model developed in
previous sections is first employed to mimic the quasi-steady
state solar corona of Carrington rotations (CR) 2219 and then
used to investigate the CME evolution and propagation pro-
cedure in the background solar corona. CR 2219 is around
the solar minimum of the solar cycle (SC) 24 and persists
from June 29, 2019, to July 26, 2019. As mentioned in Sub-
section 2.2, the initial magnetic fields for the quasi-steady
state coronal simulation are achieved from the potential field
(PF) model whose bottom boundary condition is specified
by the synoptic maps of the radial photospheric magnetic
field centered on 2019 July 2, which can be downloaded at
https://gong.nso.edu/adapt/maps/gong/. Followed by
the quasi-steady state solar coronal simulation, an RBSL flux
rope with a theoretical-based “S"-shaped axis path is inserted
into the steady corona to trigger the CME event. We compare the
CME simulation results adopted at different considerable time-
step sizes (CFL ≫ 1) with those achieved at small time-step
sizes (CFL = 1) to validate the model’s capability of accurately
and efficiently calculating time-varying simulation with a rela-
tively large time step. Furthermore, to demonstrate the implicit
MHD model’s capability of dealing with low plasma β problems,
we perform an ad hoc simulation by artificially enhancing the
initial magnetic field of the quasi-steady state coronal simula-
tion and CME simulation with a factor of 5 and 2.5 respectively,
and keeping the other initial parameters unchanged. It leads to a
low plasma β of about 5×10−4 and strong magnetic field strength
of about 53 Gauss for the background corona, and the magnetic
field strength of the flux rope reaches 34 Gauss near the foot-
points of the flux rope’s “S" shape axis path. Besides, we carry
out an Orszag-Tang MHD vortex simulation in Appendix A to
show that the novel pseudo-time-marching method and parallel
LU-SGS method adopted in this paper is capable of simulating
small-scale unsteady-state flows. In future research, we will de-
velop high-order schemes and consider more physical mecha-
nisms to make this efficient and robust MHD coronal model ca-
pable of performing high-fidelity and more realistic simulations.
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In this paper, all the calculations are performed on the Tier-
2 supercomputer infrastructure from the Flemish Supercom-
puter Center (Vlaams Supercomputer Centrum-VSC), the Flan-
ders’ most highly integrated high-performance research comput-
ing environment (https://www.vscentrum.be/). Both simu-
lations are completed on 192 CPU cores. The quasi-steady state
simulations calculated by the SIP-IFVM coronal model for CR
2219 and the ad hoc simulation reach the steady state after 776
and 1243 time iterations, and the wall-clock time durations are
0.12 and 0.18 hours, respectively. What’s more, the wall-clock
times are less than 0.7 hours for the time-dependent CME simu-
lations of 6 hours of physical time when a considerable time step
∆t ≥ 0.125 · τ f low is adopted for both simulations. Here, τ f low is
the predefined reference time length mentioned in Subsection 3.3
and constrains the time-step sizes. However, in the CME simu-
lations with a small time step in which CFL = 1 is adopted, the
corresponding wall-clock times are 2.61 and 18.03 hours for CR
2219 and the ad hoc simulation, respectively. It demonstrates that
this SIP-IFVM MHD coronal model is very efficient and numer-
ically stable in the calculation of both steady-state background
coronal structures and time-dependent CME events.

In the following of this section and Appendix A, we present
the results of the quasi-steady coronal simulations of CR 2219,
the ad hoc case with artificially enlarged magnetic field, the cor-
responding time-varying CME simulations and the small-scale
Orszag-Tang MHD vortex simulations.

4.1. Quasi-steady state simulations for CR 2219

This subsection presents the steady-state simulation results for
CR 2219 obtained from the SIP-IFVM coronal model. We com-
pare the modeled results with the solar coronal observations
and compare the simulation results calculated by this SIP-IFVM
coronal model and the SIP-IFVM coronal model’s explicit coun-
terpart. We adopt the following explicit 2nd-order Runge-Kutta
scheme (Abbreviated as ERK2 and described by Eq. (20)) in this
explicit MHD model and call it SIP-EFVM coronal model.

U(1) = Un + ∆tR (Un)

Un+1 =
1
2

Un +
1
2

(

U(1) + ∆tR
(

U(1)
)) (20)

Here, the formula for calculating ∆t in Eq. (20) is the same as in
Eq. (13), and we set CFL = 0.5 for CR 2219.

In the quasi-steady state coronal simulation calculated by
the explicit coronal model, the steady state condition is reached
after 78767 time iterations with a time step of around 5.6 ×
10−4 hours for CR 2219, and the wall-clock time is 8.25
hours. Besides, the average relative difference in proton num-
ber density RDave,ρ and radial velocity RDave,Vr

between the
steady-state results simulated by SIP-IFVM and SIP-EFVM
coronal models are only 3.05% and 3.43% for CR 2219.

Here RDave,ρ =
N
∑

i=1

∣

∣

∣ρSIP−IFVM
i

− ρSIP−EFVM
i

∣

∣

∣

/

N
∑

i=1
ρSIP−EFVM

i
and

RDave,Vr
=

N
∑

i=1

∣

∣

∣Vr
SIP−IFVM
i

− Vr
SIP−EFVM
i

∣

∣

∣

/

N
∑

i=1
Vr

SIP−EFVM
i

, the su-

perscripts “SIP−IFVM" and “SIP−EFVM" denote the corresponding
variable calculated by the SIP-IFVM and SIP-EFVM respec-
tively, and N is the number of cells in the computational domain.
It means that our SIP-IFVM coronal model gained a speedup of
68.7× for CR 2219 compared to the explicit coronal model, and
the steady-state coronal structures simulated by the implicit and
explicit models are consistent.

4.1.1. The open-field regions in the solar corona

Coronal holes (CHs) are dark regions in the images observed in
extreme ultraviolet (EUV) and soft X-ray channels due to low
plasma density in CHs caused by the magnetic field lines from
CHs that are open to interplanetary space. CHs are the most
prominent features in the solar corona because their distribu-
tions vary from different solar activity phases (Feng et al. 2015,
2017, 2019; Frazin et al. 2007; Hayes et al. 2001; Linker et al.
1999; Petrie et al. 2011). Three types of CHs can be identified
in the EUV and soft X-ray images of the solar corona. Polar
CHs are located at both solar poles and often stretch to low lat-
itudes, sometimes across the solar equator. Isolated CHs, often
seen near solar maxima, are detached from polar CHs and scatter
at low and middle latitudes. Transient CHs are associated with
solar eruptive events, such as coronal mass ejections, solar flares,
and eruptive prominences.

The right panel in Fig. 3 illustrates synoptic maps
of the observations from the Atmospheric Imaging As-
sembly (AIA) telescope on board the Solar Dynamics
Observatory (Lemen et al. 2012), which are available at
https://sdo.gsfc.nasa.gov/data/synoptic/, and the
distributions of open- and closed-magnetic field regions
achieved from the simulations (left) for CR 2219. The synop-
tic maps of observation are generated by concatenating a series
of meridian strips taken from full-disk images in a time dura-
tion of a complete CR (Hamada et al. 2018). The synoptic maps
of these observations and simulations reveal that the simulation
roughly captures the polar and isolates coronal holes.

This simulation well reproduces the northern polar CH cov-
ering almost all longitudes except the patch between 30◦ and
120◦ with the latitudes of 60◦N pole-ward. It also well captures
the southern polar CH, almost spanning all longitudes for lat-
itudes of 65◦S pole-ward. In both simulation and observation
results, the southern polar CHs between longitudes of 80◦ and
180◦ extend from 65◦S to about 30◦S and the northern polar
CH extend towards the equator from (θlat, φlong) = (65◦N, 265◦)
and reach an isolated CH centered at (θlat, φlong) = (15◦N, 280◦),
where “θlat" stands for heliographic latitude and “φlong" Carring-
ton longitude. Besides, the isolated CH centered at (θlat, φlong) =
(−15◦S, 325◦) is also reproduced by the SIP-IFVM model. How-
ever, the CH extending from the south pole to the solar equator
is larger in the simulation results than in the observation results.
It may be due to the spacecraft of SDO nearly orbiting in the
plane of the solar equator, thus resulting in the poor observa-
tion of polar CHs. The discrepancy between the modeled and
observed results in polar regions may also be attributed to inac-
curate observations for both polar photospheric magnetic fields,
the utilization of periodic conditions in the longitudinal direction
during the simulations, and the coronal evolution during this pe-
riod. According to both past simulated and observational stud-
ies (Abramenko et al. 2010; Sun et al. 2011; Yang et al. 2011),
stronger magnetic fields in polar regions tend to result in larger
areas of polar coronal holes, fewer presences of low- and middle-
latitudinal isolated coronal holes, and flatter coronal magnetic
neutral lines. In addition, these differences in the solar corona
can propagate outward and cause different manifestations in
the heliosphere (Riley et al. 2012). Therefore, the uncertainty
caused by periodically missing and high noise levels presented
in the observations of solar polar fields is a critical factor that
causes differences between the observations and the results of
3D solar wind MHD simulations.
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Fig. 3. Synoptic maps of the open-field regions modeled by the SIP-IFVM MHD model (left), and extreme ultraviolet observations from the 193 Å
channel of AIA on board SDO (right) for CR 2219. In the synoptic map, the white and black patches denote open-field regions where the magnetic
field lines point outward and inward to the Sun, respectively, and the grain patches denote the close-field region.

4.1.2. Simulated steady-state solar corona near the Sun

The white-light polarized brightness (pB) images can manifest
the coronal structures seen in both limbs. In these pB images,
bright regions represent coronal high-density structures, such as
bipolar streamers and pseudo-streamers. In contrast, dark re-
gions denote coronal low-density structures like coronal hole
(Feng et al. 2015, 2017, 2019; Feng 2020b; Frazin et al. 2007;
Hayes et al. 2001; Linker et al. 1999; Petrie et al. 2011). Bipo-
lar streamers separate CHs of opposite magnetic polarities while
pseudo-streamers separate CHs of the same polarity. Besides,
bipolar streamers extend outward several solar radii from the
Sun, and they are drawn into a cusp-like structure with a cur-
rent sheet formed above the helmet streamer (Abbo et al. 2015;
Feng et al. 2017, 2019; Riley et al. 2011; Wang et al. 2007).

In Fig. 4, we compare white-light pB images from 2.3 to 6Rs

that observed from the Large Angle and Spectrometric Corona-
graph C2 (Brueckner et al. 1995) on board the Solar and Helio-
spheric Observatory (SOHO), from 1.4 to 4Rs that observed by
the innermost coronagraph of the Sun-Earth Connection Coro-
nal and Heliospheric Investigation (SECCHI) instrument suite
on board the Solar Terrestrial Relations Observatory Ahead
(STEREO-A) spacecraft (Howard et al. 2008; Kaiser et al. 2008;
Thompson et al. 2003; Thompson & Reginald 2008), both avail-
able at https://stereo-ssc.nascom.nasa.gov/browse/
and synthesized from the results of the SIP-IFVM MHD coronal
model (b, e). The observed and modeled images show a bright
structure almost horizontally on the west limb in the LASCO-C2
view and the east limb in the STEREO-A view. In the LASCO-
C2 and STEREO-A views, two narrow bright structures exist in
the observed images, but only one is centered in the simulated re-
sult. However, the bright structures’ center positions and widths
are consistent in both observed and modeled images. From the
close-ups of magnetic field lines ranging from 1 to 5Rs on the
two selected meridian planes (c, f), we can deduce that the bipo-
lar streamers produce bright structures. Furthermore, we make
a comparison of the polarized brightness (pB) observations at 3
(left) and 5 (right) Rs and the modeled results in Fig. 5. In the
figure, the bright structures represent distributions of the high-
density coronal structures observed by SOHO/LASCO C2, and
the black dashed and yellow solid lines denote the magnetic field
lines (MNLs) modeled by the PFSS and the SIP-IFVM coronal
models. It can be seen that the MNLs modeled by our SIP-IFVM
coronal models are consistent with the MNLs from the PFSS
model and the distributions of the high-density coronal struc-
tures observed by SOHO/LASCO C2.

In Fig. 6, we plot two-dimensional (2D) modeled magnetic
field lines from 1 to 20Rs superimposed on contours of the radial

speed (left) and decadic logarithms of proton number density
(right) on the meridian plane of φlong = 250◦ − 70◦ for CR 2219.
The figure indicates that the flows of high density and low speed
(HDLS) are roughly centered around the latitude of −8◦S in the
half meridian plane of φlong = 250◦ and 9◦S in φlong = 70◦, and
the latitudinal width is about 30◦. Meanwhile, the middle and
high latitudes are dominated by the low-density and high-speed
(LDHS) flow, which is a key characteristic of solar minima.

Furthermore, we demonstrate the distribution of relative dif-
ference of plasma density between the steady-state simulation
results calculated by SIP-IFVM and SIP-EFVM coronal mod-
els in Fig. 7, with RDρ,i =

∣

∣

∣ρSIP−IFVM
i

− ρSIP−EFVM
i

∣

∣

∣

/

ρSIP−EFVM
i

. It
can be seen that the relative difference decreases along the radial
distance and is less than 5% in most regions. The average rela-

tive differences of plasma density, RDave,ρ =
1
N

N
∑

i=1
RDρ,i with N

denoting the number of cells in the computational domain, cal-
culated by SIP-IFVM and SIP-EFVM coronal model is 3.05%.
Reminding that the SIP-IFVM coronal model is more than 60
times faster than the SIP-EFVM model in steady-state conver-
gence rate, we can conclude that the SIP-IFVM coronal model
can achieve results consistent with the explicit model with a sig-
nificantly improved computational efficiency.

4.2. Time-dependent CME simulations

In this subsection, we insert the magnetic field of the RBSL flux
rope with a theoretical “S"-shaped axis path described in Subsec-
tion 2.2 to the quasi-steady state solar corona of CR 2219 to trig-
ger CME events. The pseudo-time marching method described
in Subsection 3.3 mimics these CME evolution and propagation
procedures from the solar surface to around 0.1 AU. First, we
perform a CME simulation for CR 2219 with a small physical
time step ∆t. Then, we carry out four CME simulations with
considerable physical time steps. Next, we compare the simu-
lation results calculated by adopting different large ∆t and those
calculated by adopting small ∆t. We set CFL = 1 in the sim-
ulation adopting small time step, and constrain ∆t ≤ χ · τ f low

as described in Subsection 3.3 and set χ = 1, 0.5, 0.25, 0.125
respectively in these four CME simulations adopting large ∆t.

As did in Linan et al. (2023) and Guo et al. (2023), we place
a virtual satellite to monitor the variation pattern of solar coro-
nal when disturbed by CMEs. In these CME simulations with
large and small time steps, a virtual satellite was placed at
point (r, θ, φ) = (3Rs, 0◦, 250◦) to observe the changes of ra-
dial velocity Vr, plasma density ρ, thermal temperature T and
plasma β. As illustrated in Fig. 8, there was a fluctuation of
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Fig. 4. White-light pB images observed from LASCO C2/SOHO (a) and COR1/STEREO-A (d) on June 30, 2019, corresponding pB images
synthesized from simulation results (b, e), these synthesized images range from 2.3 to 6Rs on the meridian plane of φlong = 250◦ − 70◦ (b) and
range from 1.4 to 4Rs on the meridian plane of φlong = 160◦ − 340◦ (e), respectively, and 2D simulated magnetic field lines from 1 to 5Rs on these
two selected meridian planes (c, f).

Fig. 5. Synoptic maps of white-light pB observations from SOHO/LASCO C2 at 3 (left) and 5 (right) Rs for CRs 2219. The yellow solid and black
dashed lines denote the MNLs from the SIP-IFVM and the SIP-EFVM MHD coronal models, respectively.

Vr, ρ, T and β at about 0.6 hours of the CME simulations.
Afterward, a peak appears in the profile of Vr, ρ, and T , and
a trough appears at the profile of β. During the period of 0.6
and 1.0 hours of these CME simulations with different time-step
sizes, the radial velocity all increased from 50 km s−1 to about
560 km s−1, the number density increased from 2.3×105 cm−3 to
18×105 cm−3, 14.8×105 cm−3, 13.7×105 cm−3, 13.2×105 cm−3

and 13.2 × 105 cm−3 for CFL = 1 and χ = 0.125, 0.25, 0.5, 1,
respectively. Though there was a delay in time for these param-
eters at large time steps compared to the results of small time
steps, it is less than 0.1 hours for χ = 0.125. Afterward, the
radial velocity and number density decreased to 265 km s−1

and 4.9 × 105 cm−3, respectively. During the period of 0.45
and 0.8 hours, the temperature increased from 16.35 × 105 K to
22.78×105 K and 22.84×105 K, then decreased to 14.4×105 K
and 15.5 × 105 K at 1.12 and 1.25 hours, and then increased to
18.7×105 K and 18.5×105 K at 1.8 and 2.1 hours and decreased

to 17.6×105 K for CFL = 1 and χ = 0.125, respectively. Though
there are some differences in the value and arrival time of the
peaks and troughs for the temperature profiles, the relative dif-
ferences are still minimal for CFL = 1 and χ = 0.125. As for the
β, it decreased from about 18 to about one during the period of
0.45 and 0.65 hours, then increased to 8.3 and 4.7 at 0.85 hours
and then decreased to 0.4 in the following time for CFL = 1 and
χ = 0.125, respectively. It shows that all of these CME simula-
tions with large time steps, especially the large time steps with
χ = 0.125, exhibit consistent patterns of change with the simu-
lation calculated by small time steps, and the CMEs modeled by
different time-step sizes take almost the same physical time to
arrive at this virtual satellite.

In Table 1, we further list the average relative differences
in proton number density RDχ

ave,ρ and radial velocity RDχ

ave,Vr

between the CME simulation results of large, ∆t = χ · τ f low, and
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Fig. 6. Magnetic field lines from 1 to 20Rs overlaid on contours of the radial speeds vr

(

km s−1
)

(left) and the decadic logarithms of the proton

number density N
(

cm−3
)

(right) on the meridian planes of φlong = 250◦ − 70◦ for CR 2219.

Fig. 7. Magnetic field lines from 1 to 20Rs overlaid on contours of the relative differences of plasma density on the meridian planes of φlong =

250◦ − 70◦ (a) and φlong = 160◦ − 340◦ (b) and synoptic maps for the relative differences of the plasma density at 2.6Rs (c) and 20Rs (d) for CR
2219. The white solid lines denote the MNLs from the SIP-IFVM MHD coronal model.

small, CFL = 1, physical time steps at different moments. Here

RDχ
ave,ρ =

N
∑

i=1

∣

∣

∣ρ
χ

i
− ρCFL=1

i

∣

∣

∣

/

N
∑

i=1
ρCFL=1

i
and RDχ

ave,Vr
=

N
∑

i=1

∣

∣

∣Vr
χ

i
−

Vr
CFL=1
i

∣

∣

∣

/

N
∑

i=1
Vr

CFL=1
i . The superscripts “χ" and “CFL=1" denote the

corresponding variable calculated at large (∆t = χ · τ f low) and
small (CFL = 1) physical time steps, respectively, and N is the
number of cells in the computational domain.

It can be seen that the average relative differences of both
density and radial velocity decrease with the decrease of physical
time-step size. The relative differences of density and radial ve-
locity are below 3% at different moments with χ ≤ 0.5. It means
the relative differences of CME simulation results calculated at
large and small time steps by this SIP-IFVM model can be no
more than the relative differences between steady-state simula-
tion results computed by SIP-IFVM and SIP-EFVM respectively
but with obviously high computational efficiency. We are consid-
ering that the computational time of 6 hours of physical time is
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Fig. 8. In situ measurements of simulated radial velocity vr

(

km s−1
)

(top left), proton number density
(

105 cm−3
)

(top right), temperature
(

105 K
)

(bottom left) and plasma β (bottom right) by the virtual satellite placed at (r, θ, φ) = (3Rs, 0◦, 250◦).

Table 1. Comparison of CME simulations for 6 hrs of physical time t.

Parameters χ = 1 χ = 0.5 χ = 0.25 χ = 0.125

wall-clock time (hours) 0.08 0.14 0.26 0.43
RDχ

ave,ρ & RDχ

ave,Vr
at t=1hr 2.19% & 1.54% 1.75% & 1.16% 1.17% & 0.72% 0.70% & 0.40%

RDχ
ave,ρ & RDχ

ave,Vr
at t=3hrs 3.23% & 4.68% 2.24% & 2.86% 1.59% & 1.49% 1.14% & 0.71%

RDχ
ave,ρ & RDχ

ave,Vr
at t=5hrs 3.52% & 4.29% 2.66% & 2.33% 2.09% & 1.18% 1.62% & 0.64%

only about 0.43 hours when χ = 0.125, the computation effi-
ciency can still be very high when adopting a smaller χ to get
more accurate simulation results at the expense of an acceptable
reduction in computation efficiency. We can adjust the physical
time-step sizes according to the temporal accuracy required for
our specific research or practical application work.

We demonstrate some CME simulation results calculated
with χ = 0.125 in the following.

In Fig. 9, we present snapshots of the magnetic field lines
at 0, 1, 3, and 5 hours to demonstrate the propagation of the
theoretical “S"-shaped flux rope in background coronal struc-
tures of CR 2219. These magnetic field lines are traced from
the CME simulation results in a region of (1Rs ≤ r ≤ 20Rs) ×
(22.5◦ ≤ θ ≤ 157.5◦) × (29◦ ≤ φ ≤ 299◦) and effectively capture
the significant changes in the overall morphology of the CME
flux rope as it propagates outward. The magnetic field lines
are viewed in three orthogonal directions in the left, middle,
and right panels. The left panels are viewed in the direction of

(θ, φ) = (90◦, 250◦), and the sight directions are perpendicular
to the meridian, which is parallel to the line connected by the
flux rope’s two footpoints. The middle panels are obtained by
rotating the left panel 90◦ clockwise along the Z- axis, and the
right panels are obtained by rotating the left panels 90◦ coun-
terclockwise along the radial direction, which is parallel to the
sight directions in the middle panels. It can be seen that the vol-
ume overlaid with the CME flux rope expands gradually, which
may be attributed to the magnetic-pressure gradient between the
flux rope and the surrounding solar atmosphere (Scolini, C. et al.
2019), and the magnetic reconnection occurring between the legs
of the overlying field lines (Guo et al. 2023). Also, the topology
of the magnetic field lines of the CME flux rope reveals a con-
sistent evolution pattern with those simulated by the poly tropic
MHD model (Guo et al. 2023), but with a faster-expanding ve-
locity and more realistic thermodynamic evolution. Furthermore,
we present snapshots of the radial speed Vr for CR 2219 at 1
(left), 3 (middle), and 5 (right) hours of the CME propagation
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Fig. 9. 3D view of the magnetic field topology in the corona of CR 2219. These solid lines are representative magnetic field lines displaying the
global evolution of the CME and traced from magnetic field in the region of (1Rs ≤ r ≤ 20Rs) × (22.5◦ ≤ θ ≤ 157.5◦) × (29◦ ≤ φ ≤ 299◦) which
encloses the theoretical “S" shape flux rope. The 1st, 2nd, 3rd and 4th panels correspond to the simulation results of the CME simulation at 0, 1, 3
and 5 hours, respectively. The magnetic field lines illustrated in left panel (a, d, g, j) are viewed from a direction of (θ, φ) = (90◦, 250◦), the middle
panel (b, e, h, k) from a direction of (θ, φ) = (90◦, 340◦) and the right panel (c, f, i, l) from the direction of Z- axis, these three directions of sight
are orthogonal to each other.

processes in Fig. 10. These 2D modeled contours of radial veloc-
ity are superimposed with magnetic field lines and range from
1 to 20Rs on the same meridian of Fig. 6. It can be seen that
the exceptionally high speed appears at the regions where mag-
netic field lines change sharply, and the radial velocity can reach
900 km s−1, which is consistent with the range of the speeds of
observed CMEs (Chen 2011). It demonstrates that the model re-
produces a CME with reasonable velocity and has the potential
to produce a CME event consistent with observation. Using this
model in our future research, we will make some observation-
based CME simulations.

4.3. An ad hoc simulation with very low plasma β

In this subsection, we conduct a manufactured test by utilizing
the SIP-IFVM model to mimic a very low-β problem. In the test
simulation, we multiply the initial potential field of CR 2219

with a factor of 5 and then employ the SIP-IFVM model to
achieve the quasi-steady state coronal structure. Fig. 11 displays
the synoptic map of the magnetic field (left) and the correspond-
ing plasma β (right) at a quasi-steady state near the solar surface.
It can be seen that after enlarging the magnetic field strength, the
local β value can be as small as 5 × 10−4, and the magnetic field
strength ranges from 5 to 50 Gauss in most regions near the so-
lar surface. Moreover, it takes only 0.18 hours to converge to the
steady state. In the CME simulation, we enhance the magnetic
field of the flux roped described in Subsection 2.2 with a factor
of 2.5, and set χ = 0.125. It costs 0.67 hours to finish the time-
dependent CME simulation of 6 hours of physical time. Com-
pared with the simulation by small time steps (CFL=1), which
cost 18.03 hours, this SIP-IFVM model is very efficient.

In Fig. 12, we illustrate the 2D magnetic field lines overlaid
on contours of the radial speed (left) and decadic logarithms of
the proton number density (right) on the selected plane for the
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Fig. 10. Magnetic field lines from 1 to 20Rs overlaid on contours of the radial velocity on the meridian planes of φlong = 250◦ − 70◦ for CR 2219.
The left, middle, and right panels correspond to the simulation results at 1, 3, and 5 hours of the CME simulation, respectively.

Fig. 11. Synoptic maps of the magnetic field strength in a unit of Gauss (left) and the plasma β distribution (right) at 1.015Rs for the test case with
an enhanced magnetic field.

quasi-steady state result with an enlarged initial magnetic field.
Comparing this with Fig. 6, it can be seen that the closed mag-
netic field lines near the Sun associated with coronal streamers
extend farther to about 15 Rs, but their positions are almost the
same. Moreover, the LDHS flow spans slightly larger latitudes
for the I-MHD simulation with the enhanced initial magnetic
field.

Also, we compare the simulation results calculated by large
and small time steps. The average relative differences in proton
number density and radial velocity between the CME simula-
tion results of large (χ = 0.125) and small (CFL = 1) physical
time steps at 1, 2, and 3 hours are 3.91% and 1.69%, 6.10% and
3.08%, 6.43% and 4.08%, respectively. Furthermore, we adopt a
smaller time step to check whether or not this SIP-IFVM model
can get desirable accurate simulation results at the expense of an
acceptable reduction in computation efficiency. We set χ = 0.025
in this test case; the wall-clock time is 2.49 hours, and the cor-
responding average relative differences in proton number den-
sity and radial velocity at 1, 2, and 3 hours are only 1.33%
and 0.75%, 1.98% and 1.74%, 2.08% and 2.33%, respectively.
It demonstrates that the SIP-IFVM coronal model can still be
accurate and efficient in mimicking complex problems with very
strong magnetic fields.

In Fig. 13, we further present snapshots of the radial speed
Vr and magnetic field lines at 1 (left), 2 (middle), and 3 (right)
hours of the CME propagation processes for the manufactured
test with enhanced magnetic fields. These 2D modeled contours
of radial velocity are superimposed with magnetic field lines and
illustrated on the same meridian of Fig. 10. It can be seen that
a shock appears in this simulation, the volume overlaid with the
flux rope magnetic field expands gradually. Though the topol-

ogy of magnetic field lines changes more gradually, the radial
velocity of this shock is faster.

Furthermore, to check whether the novel pseudo-time-
marching method and parallel LU-SGS method adopted in this
paper are capable of simulating small-scale unsteady-state flows,
we carry out an Orszag-Tang MHD vortex simulation in this Ap-
pendix A.

5. Conclusions

In this paper, we design an MHD model of the solar corona
and CME with an efficient and time-accurate implicit strategy
and call it the Solar Interplanetary Phenomena-Implicit Finite
Volume Method (SIP-IFVM) coronal model. In this SIP-IFVM
coronal model, the novel implicit strategy facilitates its numer-
ical stability even at large time steps, which exceeds the CFL
numerical stability limitation. This merit makes the SIP-IFVM
coronal model capable of employing a large time step to accel-
erate the convergence rate in quasi-steady-state simulations and
to reduce the calculation effort required in the time-dependent
simulations. Also, the pseudo-time marching method which in-
troduces a pseudo time τ at each physical time step and updates
the solution of each physical time step by solving a steady-state
problem on τ is used to improve the temporal accuracy of the
implicit model at large time steps.

We utilize this model to reconstruct the steady-state coronal
structure of CR 2219 and then introduce the magnetic field of
an RBSL flux rope to the steady-state corona to trigger a CME
event; afterward, we use the SIP-IFVM coronal model to simu-
late the CME propagation and evolution processes from the so-
lar surface to 20 Rs in the background corona of CR 2219. The
modeled steady-state coronal structures are basically in agree-
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Fig. 12. Magnetic field lines from 1 to 20Rs overlaid on contours of the radial speeds vr

(

km s−1
)

(left) and the decadic logarithms of the proton

number density N
(

cm−3
)

(right) on the meridian planes of φlong = 250◦ − 70◦ for the quasi-steady state result with enlarged initial magnetic field.

Fig. 13. Magnetic field lines from 1 to 20Rs overlaid on contours of the radial velocity on the meridian planes of φlong = 250◦ − 70◦ for the
manufactured test with enhanced magnetic fields. The left, middle, and right panels correspond to the simulation results at 1, 2, and 3 hours of the
CME simulation, respectively.

ment with the remote sensing observations from SDO, SOHO,
and STEREO-A, and the simulated CMEs present a reasonable
evolution pattern of magnetic and flow fields. Furthermore, we
conduct an ad hoc simulation by artificially enlarging the ini-
tial magnetic field of the background corona of CR 2219 and
the RBSL flux rope; it demonstrates that the SIP-IFVM coronal
model can robustly and efficiently deal with the time-dependent
problems with plasma β as low as about 5 × 10−4. Addition-
ally, we perform an Orszag-Tang MHD vortex flow simulation,
which shows that the pseudo-time-marching method adopted in
this model is capable of simulating small-scale unsteady-state
flows.

We can conclude that the SIP-IFVM coronal model has the
following merits, providing strong justification for using a fully
implicit scheme in time-dependent coronal and CME simula-
tions.

1. The SIP-IFVM coronal model is both time-accurate and
highly computationally efficient. Adopting large time steps
can still yield consistent results, as those calculated at small
time steps.
Compared to the simulation using a small time-step size de-
termined by the CFL stability restriction, by adopting an
appropriate large time-step size, it achieves a speedup of
over 6 × in CME simulations covering 6 hours of physical

time, with the average relative difference in plasma density,
RDave,ρ, being no more than 2.0%. Besides, by adopting a
large time-step size, the implicit quasi-steady-state coronal
model achieves a speedup of over 60 ×, with RDave,ρ being
only 3.05%, compared to the explicit model. The total wall-
clock time of the quasi-steady coronal and time-dependent
CME simulations is less than 0.6 hours (192 CPU cores, ∼ 1
M cells).

2. The SIP-IFVM coronal model can robustly and efficiently
deal with time-dependent problems with extremely low
plasma β regions.
Compared to the simulation using a small time-step size de-
termined by the CFL stability restriction, by adopting an ap-
propriate large time-step size, it achieves a speedup of over 7
× in the ad hoc simulations where the plasma β can be as low
as about 5 × 10−4, with RDave,ρ being no more than 2.4%.

3. The SIP-IFVM coronal model can reproduce both a quasi-
steady state coronal structure consistent with observations
and an explosive CME event appearing with a reasonable
evolution pattern of magnetic and flow fields.
The relatively realistic simulation result and high flexibil-
ity in the practical implementation of CME simulations are
guaranteed by adopting the thermodynamic MHD equations,
which also consider the heat conduction term to account for
energy exchanges, and utilizing the novel RBSL flux rope,
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which can both trigger a CME event by only introducing the
flux-rope magnetic field to the background corona and allow
an arbitrary shape of the electric current path.

All these simulation results demonstrate that the SIP-IFVM
model is very efficient and numerically stable and is promising
to timely and accurately simulate time-varying events in solar
corona with low plasma β in practical applications. In addition,
we have also made some preliminary attempts to use the SIP-
IFVM coronal model and observation-based RBSL flux rope
to mimic a realistic CME event, and the CME simulation re-
sults are consistent with the white-light pB images observed
from COR1/STEREO-A/B and COR2/STEREO-A/B. We will
continue making observation-based CME simulations using this
model and present these research works in future papers.

Although this established solar coronal is merited in many
aspects and acts as a promising tool for reproducing the large-
scale structures of the solar corona and timely and accurately
simulating time-varying CME events in the solar corona, there
is still room for further improvement. A proper modification of
the Jacobian matrix in Eq. (15), which reduces the mismatch
between the residual and Jacobian matrix, may lead to a better
convergence rate (e.g. Otero & Eliasson 2015b; Xia et al. 2014).
Further research on the calibration of the coronal and CME
model based on remote sensing and in situ observation is still
worthwhile to make the SIP-IFVM model perform better in re-
producing more realistic results. Extending the SIP-IFVM coro-
nal model to a high-order accurate model may make it capable of
performing high-fidelity simulations to capture subtle structures
during the time-dependent coronal simulations. In addition, it
may be worthwhile to try starting the global coronal simulation
from some more consistent low coronal simulation results. For
example, try to use the initial magnetic field above an active re-
gion calculated by the low coronal magnetic-friction (MF) model
and the evolving electric field at the photosphere derived from
a time series of observed photosphere magnetic field to drive
detailed MHD simulations of active regions (Hoeksema et al.
2020) in the SIP-IFVM global coronal model.

There are also some issues that are worth further discussion,
and we will attempt to address these in our future research to
further improve this model.

1. The pseudo-time iteration during each physical time can re-
duce computation efficiency. However, an appropriate phys-
ical time step size can help maintain required temporal ac-
curacy without much reduction in computational efficiency,
and a proper pseudo-time step can also help accelerate the
steady-state simulation’s convergence rate in pseudo-time τ.
Although the physical-time steps and pseudo-time steps used
in this paper perform well, more effective and flexible time-
step adaptation strategies may be possible. We will try to find
a better plan for selecting time-step sizes in our future re-
search works.

2. Typically, the polytropic index γ is set to be larger than
1.05 to ensure numerical stability and physical realism in
the simulation when a thermal conductivity term is consid-
ered. However, we discovered that maintaining γ = 1.05 still
yields satisfactory results in our solar coronal simulations,
even with the thermal conductivity term considered. More-
over, the inclusion of the thermal conductivity term helps to
maintain energy balance, even when γ is set to 1.05. Con-
sequently, we opted not to modify γ in this paper. Actually,
the thermodynamic processes of the solar corona are highly
intricate and susceptible to a variety of factors in MHD sim-
ulation. For example, different treatments of radiative losses,

anisotropic thermal conduction, coronal heating and even nu-
merical diffusion may lead to some variations in the results
of thermodynamic MHD coronal simulations. In the future,
we will try to recover a uniform value of γ = 5

3 after con-
sidering more thermodynamic mechanisms, such as the ra-
diative losses and more consistent physical-based heating
source terms.
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Appendix A: Orszag-Tang MHD vortex problem

The Orszag-Tang vortex system includes many significant char-
acteristics of MHD turbulence, and some shocks and other dis-
continuities occur in this MHD vortex flow as time evolves. It
was first proposed by Orszag & Tang (1979), and is frequently
used to test 2D MHD codes (Jiang & Wu 1999; Tóth 2000;
Zhang et al. 2006; Zhou & Feng 2014). In this section, we il-
lustrate the modelled results of the Orszag-Tang vortex flow. We
simulate the Orszag-Tang vortex flow by the ERK2 described
in Eq. (20) and the the pseudo-time marching method (P-t) de-
scribed in Subsection 3.3, respectively.

The computational domain of the Orszag-Tang vortex system
is set as [0, 2π] × [0, 2π], and the periodic boundary condition is
implemented in both x and y directions. The initial state is given
below.

ρ (x, y) = γ2, u (x, y) = − sin y,

v (x, y) = sin x, w (x, y) = 0,
p (x, y) = γ, Bx (x, y) = − sin y,

By (x, y) = sin 2x, Bz (x, y) = 0,

with γ = 5
3 . In the Orszag-Tang vortex simulation, the time-step

size is described as ∆t = CFL · min
∀cell i

∆hi

max
∀faces

(|vn |+c f ) . The grid res-

olution of the Orszag-Tang vortex flow modeled by the ERK2
scheme is 400×400, and CFL is set to be 0.5. As for the Orszag-
Tang vortex flow modeled by the P-t method, we adopt grid res-
olutions of 400 × 400 and 800 × 800 and set CFL to 4 and 8,
respectively. During the simulation, the physical time steps are
around 3 × 10−3 for the test modeled by the ERK2 scheme and
1.2 × 10−2 for the tests modeled by the P-t method. Since ∆t is

not too large and the matrix
(

∂R
′

∂U

)n+1,m
in Eq. (18) doesn’t change

obviously in the P-t iterations of a physical time step, we modify
Eq. (18) as bellow, inspired by the Jacobian recycling strategies
proposed in Persson (2013) and Zahr & Persson (2013), to re-
duce the computation cost.















V

∆τ
I +

V

∆t
I +

(

∂R
′

∂U

)n+1,0












∆Un+1,m =
V

∆t

(

Un − Un+1,m
)

−Rn+1,m

(A.1)

Thesemodeledd results are demonstrated as follows. In
Fig. A.1, the contour images of density and thermal pressure
of the Orszag-Tang vortex flow at t = 3, modeled by the ERK2
scheme with a resolution of 400× 400 grid cells, and modeled by
the P-t method with resolutions of 400 × 400 grid cells and 800
× 800 grid cells, are illustrated. The CFL number of the physical
time step is set to be 0.5, 2, and 4, respectively. All these flow
fields evolve in symmetrical patterns, and more detailed struc-
tures of low density are identified by the P-t method with the
refined mesh. In Fig. A.2, we compare the density and thermal
pressure profiles along the y = 0.625π line at t = 3. It shows that
shock discontinuities are formed around x = 0.5, x = 1.6, and
x = 4.4 for all these three tests, and the shock discontinuities
modeled by P-t method with the refined mesh are sharper than
those modeled by the ERK2 scheme with coarse mesh.

It can be seen that these model results conform to the pre-
vious simulations (Balsara 2010; Feng et al. 2019; Fuchs et al.
2009; Jiang et al. 2010; Yang et al. 2017), demonstrating that
the implicit LU-SGS method and pseudo-time marching method
used in this solar coronal model can also be used to simu-
late small-scale unsteady flows accurately. Therefore, the MHD
coronal model proposed in this paper is very promising. It

can perform high-fidelity simulations of critical but small-scale
physics phenomena, such as transition region dynamics, and in-
vestigate their effects on the corona (Caplan et al. 2017).

Appendix B: Data communication between different

components

To improve the precision of data communication, we transfer
the reconstructed formulation of variables, not just the point val-
ues, between adjacent processors whose grid meshes share some
overlapping area. As illustrated in Fig. B.1, we first derive the
reconstruction formulation of a variable in the ghost cell of the
blue component, the centroid of this ghost cell is denoted by
P, from the stencil in red component, and then send this recon-
struction formulation to the blue component to provide solution
information in the ghost cell of this blue component.

During this data communication procedure, we first search
the cell centroid P

′
, which is closest to P in the component with

red grids. The cell P′ with centroid denoted by P
′

and its six
neighboring cells which share an interface with cell P′ serve as a
stencil. We implement the RBF interpolation method (Liu et al.
2016; Wang et al. 2022a) to calculate the variable at point P.
Afterward, we calculate a second-order Taylor polynomial ex-
panding from P in the component with red grids by employing
a least-square (LSQ) method (Barth 1991, 1993), and the sten-
cil consists of point P, cell P′ and cell P′’s six neighboring cells
which share an interface with it. Finally, the second-order Tay-
lor polynomial derived from the red component is sent to the
blue component to maintain synchronization of this blue compo-
nent’s ghost and inner cells. This synchronized MPI data com-
munication is implemented before each LU-SGS iteration in the
quasi-steady coronal simulations and time-dependent CME sim-
ulations to help maintain the synchronization of each processor’s
ghost cells and inner cells.
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Fig. A.2. Profiles of density (left) and thermal pressure (right) at time t = 3 for the MHD vortex problem along line y = 0.625π, modeled by ERK2
with 400 × 400 grids (solid lines), by P-t with 400 × 400 grids (dashed lines), and by P-t with 800 × 800 grids (dotted lines), respectively.

Fig. B.1. Illustration of the data communication between different components. The point denoted by P is a centroid of the ghost cell of the
component with blue grids and is also in the computation domain of an adjacent component with red grids. The point denoted by P

′
is the centroid

of the cell closest to P in the component with red grids. The reconstruction formulation of a variable is first calculated in the stencil centered on
a cell with its centroid denoted by P

′
in the component with red grids and then transferred to the ghost cell with its centroid denoted by P in the

component with blue grids.
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